Properly designed charts provide convenient means of describing the equilibrium chemical reactions of the rock-fluid systems. Frequently, the pe - pH, activity-activity, and saturation index charts are facilitated for convenient description of equilibrium chemical systems. The con-struction of these charts are based on the description of chemical systems at thermodynamic equilibrium. In this section, the theoretical bases, characteristics, and utilization of these charts are described according to Schneider (1997).


Saturation Index or Mineral Stability Charts

Mineral stability charts are convenient means of representing the various equilibrium reactions of the solid minerals and aqueous solutions in geological porous media in terms of the saturation index concept. Mineral stability charts can be more meaningfully developed by considering the incongruent equilibrium reactions of various solid phases including the igneous and metamorphic reactions (Schneider, 1997). Incongruent reactions represent the direct relationships of the various solid minerals involved in aqueous solution systems. The expressions of the incongruent reactions are derived from a combination of the relevant mineral dissolution/precipitation reactions in a manner to conserve certain key elements of the solid minerals so that the aqueous ionic species of these elements do not explicitly appear in the final equation.

For example, the incongruent reactions of the alumino silicate minerals, including clay minerals, feldspars, and chlorites, are usually expressed to conserve the aluminum element (Fletcher, 1993; Schneider, 1997). Aluminum is a natural choice as the conserved element because this element is mostly immobile and the activities of the aqueous aluminum species are relatively low (Hayes and Boles, 1992; Schneider, 1997). Consequently, the incongruent mineral reaction equations do not involve the potential dissolved aluminum species such as Al+3, Al(OH)2 +, Al(OH)4~, Al(OH) +2, and Al(OH)3° (Schneider, 1997). Thus, the aluminum element conserving incongruent reaction to form the chlorite mineral from the kaolinite mineral reads as (Schneider, 1997, p. 119):

The reactions for electrolyte dissolution in water can be represented by (Schneider, 1997):

Substituting unity for the activity of the solid phase, the expression of the reaction quotient leads to the actual ion activity product, given by:

At saturation, Eq. 13-27 yields the saturation ion activity product constant given by:


and is used to determine the state of saturation of an aqueous solution by a mineral as follows:


The composition of the various species in aqueous solutions undergoing dissolution/precipitation processes depends on various factors including pressure, temperature, and pH.


affect of pH on the composition of the typical carbonate species, namely H2CO3°, HCO3- and CO3-2

Activity-Activity Charts

The Activity-Activity charts depict the regions of precipitation of various solid mineral phases. The equations of the lines separating these regions are obtained by rearranging the logarithmic expression of the equilibrium constant in a linear form to relate the saturation products of the various mineral phases. For example, the equilibrium constant for Eq. 13-25 is given by (Schneider, 1997):

in which the activities of the water and the solid kaolinite and chlorite phases were taken unity. A logarithm of Eq. 13-31 yields the linear equation for the kaolinite-chlorite phase boundary as:


The determination of the aqueous species activities is particularly complicated in highly concentrated oilfield brines because of the complexing of cations with inorganic and organic anions, and can be better accomplished by means of a simulator such as the SOLMINEQ.88 program by Kharaka et al. (1988).


pe- pH Charts

The pe - pH charts are constructed to describe the redox state of reservoirs (Stumm and Morgan, 1996; Schneider, 1997). Considering the electrons, e~, and protons, H+, involved, chemical equilibrium reactions, such as oxidation-reduction (redox) and acid-base reactions, are represented by

The electron activity (pe) and potentiometric acidity (pH) can be conveniently expressed by the following equations, respectively:


The electrode potential (Eh) and electron activity (pe) are related by (Schneider, 1997)

in which T denotes the absolute temperature in K, R = 8.31441J - K-1. mol-l is the universal gas constant and F = 9.64846 x 104 Coloumbl mol is the Faraday constant. The electrode potential can be measured directly. Eqs. 13-34 through 36 form the convenient mathematical bases for constructing the pe- pH or Eh-pH charts. However, the pe - pH charts are preferred over the Eh-pH charts because, while the sign of pH does not change and the slopes of the stability boundaries are independent of temperature, the sign of the Eh potential depends on the direction of the reaction and the slopes of the stability boundaries are temperature dependent (Schneider, 1997). For example, consider (Schneider, 1997):



Assigning unity for the activities of the water and solid mineral phases, the equilibrium constant expression reads as (Schneider, 1997):


Hence, a logarithm of Eq. 13-38 yields the equation for the hematitemagnetite boundary as:


which can be used to construct a pe - pH chart (Schneider, 1997).


References

Aja, S. U., Rosenberg, P. E., & Kittrick, J. A., "Illite Equilibria in Solutions: I. Phase Relationships in the System K2O-Al2O3-SiO2-H2O between 25 and 250°C," Geochimica et Cosmochimica Acta, Vol. 55, 1991a, pp. 1353-1364.

Aja, S. U., Rosenberg, P. E., & Kittrick, J. A., "Illite Equilibria in Solutions: II. Phase Relationships in the System K2O-MgO-Al2O3-SiO2-H2O," Geochimica et Cosmochimica Acta, Vol. 55, 1991b, pp. 1365-1374.

Amaefule, J. O., Kersey, D. G., Norman, D. L., & Shannon, P. M., "Advances in Formation Damage Assessment and Control Strategies," CIM Paper No. 88-39-65, Proceedings of the 39th Annual Technical Meeting of Petroleum Society of CIM and Canadian Gas Processors Association, June 12-16, 1988, Calgary, Alberta, 16 p.

Basset, R. L., & Melchior, D. C., "Chemical Modeling of Aqueous Systems—An Overview," Chapter 1, pp. 1-14, in Chemical Modeling of Aqueous Systems II, Melchoir, D. C. & Basset, R. L. (Eds.), ACS Symposium Series 416, ACS, Washington, 1990.

Bertero, L., Chierici, G. L., Gottardi, G., Mesini, E., & Mormino, G., "Chemical Equilibrium Models: Their Use in Simulating the Injection of Incompatible Waters," SPE Reservoir Engineering Journal, February 1988, pp. 288-294.

Bethke, C. M., Geochemical Reaction Modeling, Concepts and Application, Oxford University Press, New York, 1996, 397 p.

Bj0rkum, P. A., & Gjelsvik, N., "An Isochemical Model for Formation of Authigenic Kaolinite, K-feldspar, and Illite in Sediments," Journal of Sedimentary Petrology, Vol. 58, No. 3, 1988, pp. 506-511.

Carnahan, C. L., "Coupling of Precipitation-Dissolution Reactions to Mass Diffusion via Porosity Changes," Chemical Modeling of Aqueous Systems II, Chapter 18, pp. 234-242, D.C. Melchior & R. L. Basset (Eds.), ACS Symposium Series 416, American Chemical Society, Washington, DC, 1990.

Chang, F. F., and Civan, F., "Modeling of Formation Damage due to Physical and Chemical Interactions between Fluids and Reservoir Rocks," SPE 22856 paper, Proceedings of the 66th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, October 6-9, 1991, Dallas, Texas.

Chang, F. F., & Civan, F., "Predictability of Formation Damage by Modeling Chemical and Mechanical Processes," SPE 23793 paper, Proceedings of the SPE International Symposium on Formation Damage Control, February 26-27, 1992, Lafayette, Louisiana, pp. 293-312.

Chang, F. F., & Civan, F., "Practical Model for Chemically Induced Formation Damage," Journal of Petroleum Science and Engineering, Vol. 17, No. 1/2, February 1997, pp. 123-137.

Curtis, C. D., Ireland, B. J., Whiteman, J. A., Mulvaney, R., & Whittle, C. K., "Authigenic Chlorites: Problems with Chemical Analysis and Structural Formula Calculation," Clay Minerals, Vol. 19, 1984, pp. 471-481.

Curtis, C. D., Hughes, C. R., Whiteman, J. A., & Whittle, C. K., "Compositional Variation Within Some Sedimentary Chlorites and Some Comments on their Origin," Mineralogical Magazine, Vol. 49, 1985, pp. 375-386.

Demir, L, "Formation Water Chemistry and Modeling of Fluid-Rock Interaction for Improved Oil Recovery in Aux Vases and Cypress Formations," Department of Natural Resources, Illinois State Geological Survey, Illinois Petroleum Series 148, 1995, 60 p.

Dewers, T, Civan, E, and Atkinson, G., "Formation Damage and Carbonate Scale During Sub-Salt Petroleum Production," research proposal funded by the Interdisciplinary Research Incentive Program at the University of Oklahoma, 2000, 20 p. unpublished.

Drever, J. I., The Geochemistry of Natural Waters, Second Edition, Prentice Hall, New York City, 1988.

Dullien, F. A. L., Porous Media Fluid Transport and Pore Structure, 2nd ed., Academic Press, Inc., San Diego, 1992, 574 p.

ESTSC/COSMIC, "Geochemical Modeling of Aqueous Systems, EQ3NR," Software Technology Transfer, Energy Science and Technology Software Center (ESTSC), Oak Ridge, TN, and NASA Computer Software Technology Transfer Center (COSMIC), the University of Georgia, Athens, GA, Vol. 1, No. 1, Winter 1993, p. 17.

Fletcher, P., Chemical Thermodynamics for Earth Scientists, Longman Group UK Ltd., London, 1993.

Glover, M. C., & Guin, J. A., "Dissolution of a Homogeneous Porous Medium by Surface Reaction," AIChE Journal, Vol. 19, No. 6, November 1973, pp. 1190-1195.

Haggerty, D. J., & Seyler, B., "Investigation of Formation Damage from Mud Cleanout Acids and Injection Waters in Aux Vases Sandstone Reservoirs," Department of Natural Resources, Illinois State Geological Survey, Illinois Petroleum Series 152, 1997, 40 p.

Hayes, M. J., & Boles, J. R., "Volumetric Relations Between Dissolved Plagioclase and Kaolinite in Sandstones: Implications for Aluminum Mass Transfer in San Joaquin Basin, California," Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones, SEPM Special Publication No. 47, 1992, pp. 111-123.

Helgeson, H. C., Brown, T. H., Nigrini, A., & Jones, T. A., "Calculation of Mass Transfer in Geochemical Processes Involving Aqueous Solutions," Geochimica Cosmochimica Acta, Vol. 34, 1970, pp. 569-592.

Holstad, A., "Mathematical Modeling of Diagenetic Processes in Sedimentary Basins," Mathematical Modelling of Flow Through Porous Media, Bourgeat, A. P., Carasso, C., Luckhaus, S., & Mikelic, A., (Eds.), World Scientific Publ. Co. Pte. Ltd., 1995, pp. 418-428.

Israelachvili, J., Intermolecular and Surface Forces, 2nd ed., Academic Press, San Diego, 1992, 450 p.

James, R. O., & Parks, G. A., "Characterization of Aqueous Colloids by their Electrical Double-Layer and Intrinsic Surface Chemical Properties," in Surface and Colloid Science, Vol. 12, Matijevic, E. (ed.), Plenum Press, New York, pp. 119-216.

Jennings, A. A., & Kirkner, D. J., "Instantaneous Equilibrium Approximation Analysis," J. of Hydraulic Eng., Vol. 110, No. 12, 1984, pp. 1700-1717.

Kaiser, W. R., "Predicting Reservoir Quality and Diagenetic History in the Frio Formation (Oligocene) of Texas," Clastic Diagenesis: AAPG Memoir 37, McDonald, D. A. & Surdam, R. C. (Eds.), American Association of Petroleum Geologists, 1984, pp. 195-215.

Kandiner, H. J., & Brinkley, S. R., "Calculation of Complex Equilibrium Relations," Ind. Eng. Chem., Vol. 42, 1950, pp. 850-855.

Kharaka, Y. K., & Barnes, I., "SOLMINEQ: Solution-mineral-equilibrium Computations: U.S. Geological Survey Computer Contributions," NTIS No. PB215-899, 1973, 81 p.

Kharaka, Y. K., Gunter, W. D., Aggarwal, P. K., Perkins, E. H., & DeBraal, J. D., "SOLMINEQ.88: A Computer Program for Geochemical Modeling of Water-Rock Interactions," U.S. Geological Survey Water-Resources Investigations Report 88-4227, Menlo Park, CA, 1988, 429 p.

Labrid, J., & Bazin, B., "Flow Modeling of Alkaline Dissolution by a Thermodynamic or by a Kinetic Approach," SPE Reservoir Engineering, May 1993, pp. 151-159.

Li, Y-H., Crane, S. D., Scott, E. M., Braden, J. C., & McLelland, W. G., "Waterflood Geochemical Modeling and a Prudhoe Bay Zone 4 Case Study," SPE Journal, Vol. 2, March 1997, pp. 58-69.

Li, Y-H., Fambrough, J. D., & Montgomery, C. T., "Mathematical Modeling of Secondary Precipitation from Sandstone Acidizing," SPE Journal, December 1998, pp. 393-401.

Lichtner, P. C., "Continuum Model for Simultaneous Chemical Reactions and Mass Transport in Hydrothermal Systems," Geochimica et Cosmochimica Acta, Vol. 49, 1985, pp. 779-800.

Lichtner, P. C., "The Quasi-Stationary State Approximation to Coupled Mass Transport and Fluid-Rock Interaction in a Porous Medium," Geochimica et Cosmochimica Acta, Vol. 52, 1988, pp. 143-165.

Lichtner, P. C., "Time-Space Continuum Description of Fluid/Rock Interaction in Permeable Media," Water Resources Research, Vol. 28, No. 12, December 1992, pp. 3135-3155.

Liu, X., Ormond, A., Bartko, K., Li, Y, & Ortoleva, P., "A Geochemical Reaction-Transport Simulator for Matrix Acidizing Analysis and Design," J. of Petroleum Science and Engineering, Vol. 17, No. 1/2, February 1997, pp. 181-196.

Liu, X., & Ortoleva, P., "A Coupled Reaction and Transport Model for Assessing the Injection, Migration, and Fate of Waste Fluids," SPE 36640 paper, Proceedings of the 1996 SPE Annual Technical Conference and Exhibition, Denver, Colorado, October 6-9, 1996, pp. 661-673.

Liu, X., & Ortoleva, P., "A General-Purpose, Geochemical Reservoir Simulator," SPE 36700 paper, Proceedings of the 1996 SPE Annual Technical Conference and Exhibition, Denver, Colorado, October 6- 9, 1996, pp. 211-222.

Melchior, D. C., & Bassett, R. L. (Eds.), "Chemical Modeling of Aqueous Systems II," ACS Symposium Series 416, American Chemical Society, Washington, DC, 1990, 556 p.

Nordstrom, D. K., & Munoz, J. L., Geochemical Thermodynamics, 2nd ed., Blackwell Scientific Publications, Boston, 1994.

Ortoleva, P., Geochemical Self-Organization, Oxford University Press, New York, 1994.

Plummer, L. N., Geochemical Modeling of Water-Rock Interaction: Past, Present, Future," in Water-Rock Interation, Vol. 1, Kharaka, Y. K. & Maest, A. S. (Eds.), 1992, Balkema, Rotterdam, Brookfield, 858 p.

Prigogine, I., & DeFay, R., Chemical Thermodynamics, D.H. Everett (trans.), Longmans Green and Co., London, 1954, 543 p.

Rege, S. D., & Fogler, H. S., "Competition Among Flow, Dissolution and Precipitation in Porous Media," AIChE J., Vol. 35, No. 7, 1989, pp. 1177-1185.

Sahai, N., & Sverjensky, D. A., "GEOSURF: A Computer Program for Modeling Adsorption on Mineral Surfaces from Aqueous Solution," Computers and Geosciences, Vol. 24, No. 9, 1998, pp. 853-873.

Schechter, R. S., & Gidley, J. L., "The Change in Pore Size Distribution from Surface Reactions in Porous Media," AIChE Journal, Vol. 15, No. 3, May 1969, pp. 339-350.

Schneider, G. W., "A Geochemical Model of the Solution-Mineral Equilibria Within a Sandstone Reservoir," M.S. Thesis, The University of Oklahoma, 1997, 157 p.

Scott, A. R., "Organic and Inorganic Geochemistry, Oil-Source Rock Correlation, and Diagenetic History of the Permian Spraberry Formation, Jo Mill Field, Northern Midland Basin, West Texas," M.S. Thesis, Sul Ross State University, Alpine, Texas, 1988.

Sears, S. O., & Langmuir, D., "Sorption and Mineral Equilibria Controls on Moisture Chemistry in a C-Horizon Soil," Journal of Hydrology, Vol. 56, 1982, pp. 287-308.

Shaughnessy, C. M., & Kline, W. E., "EDTA Removes Formation Damage at Prudhoe Bay," SPE 11188 paper, presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, September 26-29, 1982.

Shaughnessy, C. M., & Kline, W. E., "EDTA Removes Formation Damage at Prudhoe Bay," Journal of Petroleum Technology, October 1983, pp. 1783-1792.

Steefel, C. I., & Lasaga, A. C., "Evolution of Dissolution Patterns- Permeability Change Due to Coupled Flow and Reaction," Chemical Modeling of Aqueous Systems II, Chapter 16, pp. 212-225, D.C. Melchior & R. L. Basset (Eds.), ACS Symposium Series 416, American Chemical Society, Washington, DC, 1990.

Stumm, W., & Morgan, J. J., Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, John Wiley and Sons, New York, New York, 1996.

Todd, A. C., & Yuan, M. D., "Barium and Strontium Sulfate Solid Solution Formation in Relation to North Sea Scaling Problems," SPE 18200 paper, Proceedings of the Society of Petroleum Engineers 63rd Annual Technical Conference and Exhibition, Houston, Texas, October 2-5, 1988, pp. 193-198.

Walsh, M. P., Lake, L. W, & Schechter, R. S., "A Description of Chemical Precipitation Mechanisms and Their Role in Formation Damage During Stimulation by Hydrofluoric Acid," Journal of Petroleum Technology, September 1982, pp. 2097-2112.

Warren, E. A., & Curtis, C. D., "The Chemical Composition of Authigenic Illite Within Two Sandstone Reservoirs as Analysed by TEM," Clay Minerals, Vol. 24, 1989, pp. 137-156.

Westall, J. C., "Reactions at the Oxide-Solution Interface: Chemical and Electrostatic Models," in Geochemical Processes at Mineral Surfaces, Davis, J. A. & Hayes, K. F. (Eds.), ACS, Washington, 1986, pp. 54-78.

Yates, D. E., Levine, S., & Healy, T. W., "Site-Binding Model of the Electrical Double Layer at the Oxide/Water Interface," Journal of the Chemical Society Fraday Transactions /, Vol. 70, 1974, pp. 1807-1818.

Yeboah, Y. D., Somuah, S. K., & Saeed, M. R., "A New and Reliable Model for Predicting Oilfield Scale Formation," SPE 25166 paper, Proceedings of the SPE International Symposium on Oilfield Chemistry, New Orleans, Louisiana, March 2-5, 1993, pp. 167-176.