{{#if:66|! style="background: #F8EABA; text-align: center;" colspan="2" | Properties
Prismane
Chemical structure of prismane Chemical structure of prismane
CPK model of prismane
Identifiers
CAS number 650-42-0 7pxN
ChemSpider 16736515 7pxY
Jmol-3D images Image 1
Molecular formula C6H6
Molar mass 78.11 g mol−1
 14pxN (verify) (what is: 10pxY/10pxN?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Prismane is a polycyclic hydrocarbon with the formula C6H6. It is an isomer of benzene, more specific: a valence isomer. Prismane is far less stable than benzene. The carbon (and hydrogen) atoms of the prismane molecule are arranged in the shape of a six-atom triangular prism. Albert Ladenburg proposed this structure for the compound now known as benzene.[1] The compound was not synthesized until 1973.[2]

History

In the mid 19th century, investigators proposed several possible structures for benzene which were consistent with its empirical formula, C6H6, which had been determined by combustion analysis. The first, which was proposed by Kekulé in 1867, later proved to be closest to the true structure of benzene. This structure inspired several others to propose structures that were consistent with benzene's empirical formula; for example, Ladenburg proposed prismane, Dewar proposed Dewar benzene, and Koerner and Claus proposed Claus' benzene. Some of these structures would be synthesized in the following years. Prismane, like the other proposed structures for benzene, is still often cited in the literature, because it is part of the historical struggle toward understanding the mesomeric structures and resonance of benzene. Some computational chemists still research the differences among the possible isomers of C6H6.[3]

Properties

It is a colourless liquid. The deviation of the carbon-carbon bond angle from 109° to 60° in a triangle leads to a high ring strain, reminiscent of that of cyclopropane but greater. The compound is explosive, which is unusual for a hydrocarbon. Due to this ring strain, the bonds have a low bond energy and break at a low activation energy, which makes synthesis of the molecule difficult. The molecule in which all six hydrogens are substituted by methyl groups (hexamethylprismane) has a higher stability and was synthesized by rearrangement reactions in 1966.[4]

Synthesis

Synthesis of Prismane

The synthesis starts from benzvalene (1) and 4-phenyltriazolidone, which is a strong dienophile. The reaction is a stepwise Diels-Alder like reaction, forming a carbocation as intermediate. The adduct (2) is then hydrolyzed under basic conditions and afterwards transformed into a copper(II) chloride derivative with acidic copper(II) chloride. Neutralized with a strong base, the azo compound (3) could be crystallized with 65% yield. The last step is a photolysis of the azo compound. This photolysis leads to a biradical which forms prismane (4) and nitrogen with a yield of less than 10%. The compound was isolated by preparative gas chromatography.

See also

References

  1. Script error
  2. Script error
  3. Script error
  4. Script error

External links

fr:3-prismane ko:프리스메인 it:Prismano nl:Prismaan ja:プリズマン ru:Призман zh:棱晶烷