Well logging
Gamma ray logging
Spontaneous potential logging
Resistivity logging
Density logging
Sonic logging
Caliper logging
Mud logging
LWD/MWD
NMR Logging
<small/>

Resistivity logging is a method of well logging that works by characterizing the rock or sediment in a borehole by measuring its electrical resistivity. Resistivity is a fundamental material property which represents how strongly a material opposes the flow of electric current. In these logs, resistivity is measured using 4 electrical probes to eliminate the resistance of the contact leads. The log must run in holes containing electrically conductive mud or water.

Resistivity logging is sometimes used in mineral exploration and water-well drilling, but most commonly for formation evaluation in oil- and gas-well drilling. Most rock materials are essentially insulators, while their enclosed fluids are conductors. Hydrocarbon fluids are an exception, because they are almost infinitely resistive. When a formation is porous and contains salty water, the overall resistivity will be low. When the formation contains hydrocarbon, or contains very low porosity, its resistivity will be high. High resistivity values may indicate a hydrocarbon bearing formation.

Usually while drilling, drilling fluids invade the formation, changes in the resistivity are measured by the tool in the invaded zone. For this reason, several resistivity tools with different investigation lengths are used to measure the formation resistivity. If water based mud is used and oil is displaced, "deeper" resistivity logs (or those of the "virgin zone") will show lower conductivity than the invaded zone. If oil based mud is used and water is displaced, deeper logs will show higher conductivity than the invaded zone. This provides not only an indication of the fluids present, but also, at least quantitatively, whether the formation is permeable or not.

Use in mineral exploration

Resistivity logs are also used in mineral exploration, especially exploration for iron and potassium.

See also